
	UNIT 2
	OBJECT AND OBJECT RELATIONAL DATABASES

SYLLABUS: UNIT III INTELLIGENT DATABASES 9
Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications-Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules-Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-Spatial Access Methods- Spatial DB Implementation.
3.1: Active Databases
[bookmark: _GoBack]3.2 Taxonomy Of active databases
3.3 Applications
3.4 Design Principles for Active Rules
3.5 Temporal Databases
3.6 Deductive Databases
3.7 Data log & Data log Languages
3.8 Implementation of Rules and Recursion
3.9 Recursive Queries in SQL
3.10 Spatial Databases
CS8071-ADT	 JCE-IT 2021-22

[image:]
 ARUN PRASAD.K, ASP/IT UNIT-3

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
image2.png
Usually update of single row in database table.
IF condition holds
Usually SQL query joining the triggered row with database table.
Condition is considered true if query returns non-empty result.
DO execute action

Usually SQL update statements or call to stored procedure referencing the
updated row

Example
Event : Customer has not paid 3 invoices at the due date
Condition : The credit limit is less than 20,000

Action : Cancel all current orders of this customer

Starburst

Starburst is the name of a project developed at the IBM Almaden Research Center;
an active database extension developed in this framework, called the Starburst
Active Rule System, has gained popularity mainly because of its simple syntax
and semantics, which adopts the classical set-oriented syntax and semantics of
relational databases.

The Starburst Rule System is a facility for creating and executing database
production rules.

In most active database systems, including Starburst, production rules are a
persistent part of the database and are created using a rule definition language.

As users and applications interact with data in the database, rules are triggered,
evaluated, and executed automatically by a database rule processor.

In developing the Starburst Rule System we had two major goals :

Design of a rule definition language with a clearly defined and flexible execution
semantics.

. Rapid implementation of a fully integrated rule processor using the extensibility

features of Starburst.

In Starburst, the syntax for creating a rule is :

create rule name on table
when triggering operations [if condition] then action [precedes rule-list][follows
rule-list]

image3.png
Rules are processed at rule processing points. There is an automatic rule
processing point at the end of each transaction and there may be additional
user-specified processing points within transactions.

The starburst rule language includes five commands for defining and manipulating
rules : create rule, alter rule, deactivate rule, activate rule and drop rule.

Rules may be grouped into rule sets, which are defined and manipulated by the
commands create ruleset, alter ruleset and drop ruleset.

Rules are defined using the create rule command. The syntax of this command is :
Creater rule name on table
when triggering-operations
[if condition]
then action-list
[precedes rule-list]
[follows rule-list]
The name names the rule and each rule is defined on a table. Square brackets
indicate clauses that are optional.

The when clause specifies what causes the rule to be triggered. Rules can be
triggered by any of the three relational data modification operations : inserted,
deleted and updated.

The updated triggering operation may include a list of columns; specifying
updated without a column list indicates that the rule is triggered by updates to
any column. Each rule specifies one or more triggering operations in its when
clause; any of the specified operations on the rule's table will trigger the rule.

The if clause specifies a condition to be evaluated once the rule is triggered. A
rule condition is expressed as an unrestricted select statement in Starburst's SQL.

The condition is true if and only if the select statement produces at least one
tuple. The if clause may be omitted, in which case the rules conditions is always
true.

The triggering operations are one or more of inserted, deleted, and updated
(cy;-++;¢p), where cy;-+;c, are columns of the rule's table. The optional condition
is an arbitrary SQL predicate over the database.

The action is an arbitrary sequence of database operations, including SQL data
manipulation commands, data definition commands, and rollback.

The optional precedes and follows clauses are used to partially order the set of
rules : if a rule ry specifies a rule r, in its precedes list, or if ry specifies ry in its
follows list, then ry has higher priority than r,.

image4.png
Commands also are provided to alter, drop, deactivate, and activate rules. Rule
sets may be created; each set contains zero or more rules and each rule belongs to
zero or more sets.

Rule processing is an iterative algorithm in which :

1. A triggered rule R is selected for consideration such that no other triggered rule
has priority over R

2. R's condition is evaluated

3. If R's condition is true, R's action is executed.

For step 1, a rule is triggered if one or more of its triggering operations occurred
in the composite transition since the last time the rule was considered, or since the
start of the transaction if the rule has not yet been considered.

The effect of this semantics is that each rule sees each modification exactly once.
Rule processing terminates when a rollback action is executed, or when there are
no more triggered rules.

In Starburst, the basic events that can be specified for triggering the rules are the
standard SQL update commands : INSERT, DELETE, and UPDATE. These are
specified by the keywords INSERTED, DELETED, and UPDATED in STARBURST
notation.

The rule designer needs to have a way to refer to the tuples that have been
modified. The keywords INSERTED, DELETED, NEW-UPDATED, and
OLD-UPDATED are used in Starburst notation to refer to four transition tables
(relations) that include the newly inserted tuples, the deleted tuples, the updated
tuples before they were updated, and the updated tuples after they were updated,
respectively.

Obviously, depending on the triggering events, only some of these transition tables
may be available. Transition tables contain tuples of the same type as those in the
relation specified in the ON clause of the rule-for R1S, R2S, and R3S, this is the
EMPLOYEE relation.

In statement-level semantics, the rule designer can only refer to the transition
tables as a whole and the rule is triggered only once, so the rules must be written
differently than for row-level semantics. Because multiple employee tuples may be
inserted in a single insert statement, we have to check if at least one of the newly
inserted employee tuples is related to a department.

Following are active rules using statement-level semantics in STARBURST notation
R1S: CREATE RULE Total_sall ON EMPLOYEE
WHEN INSERTED

image5.png
IF EXISTS(SELECT * FROM INSERTED WHERE Dno IS NOT NULL)
THEN UPDATE DEPARTMENT AS D
SET D.Total_sal = D.Total_sal +
(SELECT SUM (I.Salary) FROM INSERTED AS I WHERE
D.Dno = 1.Dno)
WHERE D.Dno IN (SELECT Dno FROM INSERTED);

R2S: CREATE RULE Total_sal2 ON EMPLOYEE
WHEN UPDATED (Salary)
IF EXISTS (SELECT * FROM NEW-UPDATED WHERE Dno IS NOT NULL)
OR EXISTS (SELECT * FROM OLD-UPDATED WHERE Dno IS NOT NULL)
THEN UPDATE ~ DEPARTMENT AS D
SET D.Total sal = D.Total sal +
(SELECT SUM (N.Salary) FROM NEW-UPDATED AS N
WHERE D.Dno = N.Dno) -
(SELECT SUM (O .Salary) FROM OLD-UPDATED AS O
WHERE D.Dno = 0.Dno)
‘WHERE D.Dno IN (SELECT Dno FROM NEW-UPDATED) OR
D.Dno IN (SELECT Dno FROM OLD-UPDATED);

R3S: CREATE RULE Total_sal3 ON EMPLOYEE
WHEN UPDATED (Dno)
THEN UPDATE DEPARTMENT AS D
SET D.Total sal = D.Total_sal +
(SELECT SUM (N.Salary) FROM NEW-UPDATED AS N
‘WHERE D.Dno = N.Dno)
WHERE D.Dno IN (SELECT Dno FROM NEW-UPDATED);
UPDATE DEPARTMENT AS D
SET D.Total sal = Total_sal —
(SELECT SUM (O.Salary) FROM OLD-UPDATED AS O
WHERE D.Dno = O.Dno)
WHERE D.Dno IN (SELECT Dno FROM OLD-UPDATED);
e In RIS, the condition
EXISTS (SELECT * FROM INSERTED WHERE Dno IS NOT NULL)
is checked, and if it evaluates to true, then the action is executed. The action updates
in a single statement the DEPARTMENT tuple(s) related to the newly inserted
employee(s) by adding their salaries to the Total_sal attribute of each related
department. Because more than one newly inserted employee may belong to the same

image6.png
department, we use the SUM aggregate function to ensure that all their salaries are
added.

e The Starburst Rule System provides a powerful mechanism that can be used for
traditional database functions such as integrity constraints and derived data, for
non-traditional database functions such as situation monitoring and alerting, and
as a platform for large knowledge-base and expert systems.

¢ Unfortunately, developing a set of rules to correctly realize such applications can
be a difficult task: rule processing is inherently dynamic and unstructured, it
interacts with arbitrary database changes, and its behavior can be unpredictable
and difficult to specify.

Oracle

e An Oracle database is a collection of data treated as a unit. The purpose of a
database is to store and retrieve related information.

e A database server is the key to solving the problems of information management.
In general, a server reliably manages a large amount of data in a multiuser
environment so that many users can concurrently access the same data.

e Oracle allows you to define procedures that are implicitly executed when an
INSERT, UPDATE, or DELETE statement is issued against the associated table.
These procedures are called database triggers.

e Oracle supports general purpose triggers, developed according to preliminary
document on the SQL3 standard for triggers.

e Oracle support two types of triggers : row level and statement level.

e Row level trigger is fired each time row is affected by Insert, Update or Delete
command. If statement doesn't affect any row, no trigger action happens.

e Statement level trigger : This kind of trigger fires when a SQL statement affects
the rows of the table. The trigger activates and performs its activity irrespective of
number of rows affected due to SQL statement.

e DML triggers have four basic timing points for a single table.

a. Before Statement : Trigger defined using the BEFORE keyword, but the FOR
EACH ROW clause is omitted.

b. Before Each Row : Trigger defined using both the BEFORE keyword and the
FOR EACH ROW clause.

c. After Each Row : Trigger defined using both the AFTER keyword and the
FOR EACH ROW clause.

image7.png
d. After Statement : Trigger defined using the AFTER keyword, but the FOR
EACH ROW clause is omitted.

e Syntax of the Oracle CREATE TRIGGER statement:
<Oracle-trigger> :: = CREATE TRIGGER <trigger-name>
{BEFORE|AFTER} <trigger-events>
ON <table-name>
[[REFERENCING <references>]|
FOR EACH ROW
[WHEN (<condition>)]] <PL/SQL block>
<trigger event> :: = INSERT | DELETE | UPDATE
[OF <column-names> |
<reference> :: = OLD AS <old-value-tuple-name> |

NEW AS <new-value-tuple-name >

Syntax explanation :

a. The above syntax shows the different optional statements that are present in trigger
creation.

b. BEFORE/ AFTER will specify the event timings.

c. INSERT/UPDATE/LOGON/CREATE/etc. will specify the event for which the
trigger needs to be fired.

d. ON clause will specify on which object the above-mentioned event is valid. For
example, this will be the table name on which the DML event may occur in the
case of DML Trigger.

e. Command "FOR EACH ROW" will specify the ROW level trigger.

f. WHEN clause will specify the additional condition in which the trigger needs to
fire.

g. The declaration part, execution part, exception handling part is same as that of the
other PL/SQL blocks. Declaration part and exception handling part are optional.
NEW and: OLD Clause

e In a row level trigger, the trigger fires for each related row. And sometimes it is
required to know the value before and after the DML statement.

e Oracle has provided two clauses in the RECORD-level trigger to hold these values.

We can use these clauses to refer to the old and new values inside the trigger
body.

1. :NEW - It holds a new value for the columns of the base table/view during
the trigger execution

image8.png
2. :OLD - It holds old value of the columns of the base table/view during the trigger
execution

e This clause should be used based on the DML event. Below table will specify
which clause is valid for which DML statement (INSERT/UPDATE/DELETE).

INSERT UPDATE DELETE

NEW VALID VALID INVALID. There is no new value
in delete case

:OLD INVALID. There is no old value VALID VALID
in insert case

e Oracle rule processing algorithm are as follows :
1. Execute the statement level before triggers.
2. For each row in the target table :
Execute the row level before triggers.

b. Perform the modification of the row and row level referential integrity and
assertion checking.

c. Execute the row level after triggers.
3. Perform statement level referential integrity and assertion checking.

4. Execute the statement level after triggers.

DB2

e A DB2 Triggers is a database program, which can be executed automatically by
the server when an event is raised. DB2 Triggers executes before or after an insert,
update or delete statement.

e DB2 Triggers are fired, when a appropriate event occurs for the table. DB2
Triggers are used to perform verification checks on data values for insertion and
perform calculations.

e DB2 Triggers are of 2 types : before insert trigger and after insert trigger.

e Syntax of triggers in DB2 :
<DB2-trigger> :: = CREATE TRIGGER <trigger-name>
{BEFORE|AFTER} <trigger-event>
ON <table-name>
[[REFERENCING <references>]|
FOR EACH { ROW | STATEMENT }
[WHEN (<SQL-condition>)

image9.png
<SQL-procedure-statements >
<trigger event> :: = INSERT | DELETE | UPDATE
[OF <column-names>]
<reference> :: = OLD AS <old-value-tuple-name> |
NEW AS <new-value-tuple-name> |
OLD_TABLE AS <old-value-table-name>
NEW_TABLE AS <new-value-table-name>
e DB2 statement processing procedure is as follows :
When triggers activate each other, if a modification statement S in the action A of a trigger
causes an event E, then the following procedure takes place
1. Suspend the execution of A, and save its working storage on a stack.
2. Compute transition values (OLD and NEW) relative to event.

3. Consider and execute all before-triggers relative to event E, possibly changing the
NEW transition values.

4. Apply NEW transition values to the database, thus making the state change
associated to event E effective.

5. Consider and execute all after-triggers relative to event E. If any of them contains

an action Al that activates other triggers, then invoke this processing procedure
recursively for AL

6. Pop from the stack the working storage for A and continue its evaluation.

[SELTICRRRN Given the relational schema :

EMPLOYEE (Name, Salary, DeptNum)

DEPARTMENT(DeptNum, ManagerName)

define the following active rules in Oracle and DB2

1) A rule that deletes all the employees belonging to a department when that department is
deleted.

2) A rule that reacts to the deletion of the employee who is manager in a department by
deleting that department and all its employees.

3) A rule that, each time the salary of an employee becomes higher than that of his or her
manager, makes that salary equal to that of the manager.

4) A rule that, each time the salaries are modified, verifies that there are no departments in
which the average salary increases more than three percent, and in this case cancels the
modification.

5) A rule that, each time the salaries are modified, verifies their average and if it is higher
than 50 thousand, deletes all the employees whose salary has been modified and are higher
than 80 thousand.

image10.png
Solution : The first 4 triggers have the same syntax both in Oracle and DB2
1) create trigger T1
after delete on Department
for each row
when (Employee.DeptNum=0ld,DeptNum)
delete from Employee where DeptNum=0Id.DeptNum
2) create trigger T2
after delete on Employee
for each row
when (old.Name in (select ManagerName from Department)
begin
delete from Employee where DeptNum=0ld.DeptNum;
delete from Department where DeptNum=0ld.DeptNum;
end
3) create trigger T3
after update of Salary on Employee
for each row
declare x number;
begin
select Salary into x
from Employee join Department on
Name=ManagerName
where Department.DeptNum=New.DeptNum
if new.salary > x then
update Employee set salary=x
where Name=New.Name
4) create trigger T4
after update of Salary on Employee
for each row
declare x number;
declare y number;
declare 1 number;
begin
select avg(salary), count(*) into x, 1
from Employee
where DeptNum=New.DeptNum;
y=((x*1)}-New.Salary+old.Salary)/1;
if (x>(y*1.03)) then
update Employee set Salary=old.Salary

image11.png
where DeptNum=New,DeptNum;
end
5) (ORACLE)
create trigger T6
after update of Salary on Employee
for each statement
when ((select avg (Salary) from new_table) > 50000)
delete from Employee
where Salary>80000
and Name in (Select new_table.Name
from new_table an n join old_table as o
on n.Name=o0.Name
where n.Salary<>old.Salary)
(DB2)
create trigger TS
after update of Salary on Employee
when ((select avg (Salary) from new_table) > 50000)
delete from Employee
where Salary>80000
and Name in (Select new_table.Name
from new_table an n join old_table as o
on n.Name=o0.Name
where n.Salary<>old.Salary)

[EEA Taxonomy of Active Database Concepts
e Events and Conditions : DB changes, retrievals, time related events, composite

events, application defined

e Actions : DB changes, messages, stored procedures, grant privileges, activate rules,
arbitrary programs

e Consideration and execution :
= Immediate Before
= Immediate After
m Deferred (till the end of transaction)
» Detached (in another transaction)
e Granularity : row or statement

e SQL : 1999 attempts to put a limit on these many alternatives. Still semantics is
very complex.

image12.png
Applications

1. Integrity management : Integrity maintenance is the most significant internal
application. Constraints may be classified as static or dynamic.

e Static constraints are predicates evaluated on database states.

e Dynamic constraints are predicates on state transitions, which compare two
subsequent database states produced by a transaction.

e Built-in constraints are fixed; they are specified by special language constructs of
the data definition language.

e Generic constraints are arbitrary, specified by generic predicates or queries.

In order to support views and derived data, a database management system can use
two strategies :

e Derived data can be virtually supported; in this case, their content is computed on
demand, whenever the application issues a query that uses either a view or a
derived attribute.

e Alternatively, derived data can be materialized; their content is persistently stored
in the database. Materialized data can be accessed as any other data, but their
content must be recomputed whenever the source data from which they are
derived is changed.

Design Principles for Active Rules

Properties of active rule execution :
e Termination : For any legal transaction, the subsequent rule execution terminates.

e Confluence : For any legal transaction, the subsequent rule execution terminates in
the same final state.

o Identical observable behavior : For any legal transaction, the subsequent rule
execution is confluent and produces the same output sequence.

e Termination is the key design principle for active rules.

e A triggering graph is an effective representation of rules for reasoning about
termination. An active database has non terminating behavior if and only if there
exists at least one transaction which produces nonterminating rule processing.

e Triggering Graph (TG) :
1. Directed graph {V, E}

2. Node v; € V correspond to rule r; € R

image13.png
3. Arc <ryri> € E means that the action of rule rj generates events which trigger rule
Ty
4. Acyclicity of the triggering graph implies the absence of non-terminating behaviors.

e Fig. 3.4.1 shows example of a triggering graph.

Fig. 3.4.1 Example of a triggering graph

e Two rules creating an arc
CREATE RULE T1 FOR Table 1
WHEN...

I

THEN UPDATE Table 1.Attrl...
CREATE RULE T2 FOR Tablel
WHEN UPDATED (Attr1)

...

THEN...

e Confluence is the property that there only one final result (even when execution is
nondeterministic). This is often called Church-Rosser property and the
Knuth-Bendix algorithm can be used to determine if a given set of rules has this
property.

e It is set-oriented rules (i.e., statement level triggering event)

e Confluence is an issue when there is no total order between rules.

e For tuple-oriented rules (e.g., for each row) confluence is an issue even if the rules
are totally ordered. In general confluence is hard to assure and might not be
necessary.

image14.png
Tuple-oriented Rules

e Confluence is much harder to ensure; it requires that the final state does not
depend on the system's controlled order in which tuples are accessed.

e But : Confluence is not necessary or desirable in many cases.

e Mutating table exception, when a table that is currently being updated also needs to
be changed by a rule; may reveal lack of confluence.

¢ Sufficient condition for confluence : Commutativity of two rules r; and r, : if for
any database state, rule r; and then rule r; followed by r, produces the same
database as r, followed by r;.

¢ Business processes have been analyzed using ECA rules. A flexible and modular
ECA rule based approach provides an effective approach for easy integration of
rules, methods for verification and validation of rule sets, adapt, alter and
maintain the requirements change in business processes system. Database trigger
has been used to implement business processes system.

X3 Temporal Databases

e A temporal database is a database that has certain features that support
time-sensitive status for entries. Where some databases are considered current
databases and only support factual data considered valid at the time of use, a
temporal database can establish at what times certain entries are accurate.

e Technologies including Oracle, Teradata and SQL have versions with temporal
feature support.

e Different uses of temporal databases require radically different types of
development. For example, in a database of customer, patient or citizen data,
indicators for individual people will follow a kind of life cycle timeline that can be
created according to time frames for comment life events.

e By contrast, many industrial processes using temporal databases need extremely
short valid time and transaction time indicators. These are rigidly implemented
depending on length of time for various parts of business processes.

e Case Study :

e Personnel management in a database :
Employee(Name, Salary, Title, BirthDate DATE)
e It is easy to know the salary of an employee :
SELECT Salary
FROM Employee
WHERE Name = 'lresh'

image15.png
It is also easy to know the date of birth of an employee :
SELECT BirthDate

FROM Employee

WHERE Name = 'lresh’

Converting to a Temporal Database

We want to keep the employment history
Employee(Name, Salary, Title, BirthDate, FromDate DATE, ToDate DATE)

Name Salary Title BirthDate FromDate ToDate
Iresh 60,000 Assistant 9/9/60] 1/1/95 1/6/95
Iresh 70,000 Assistant 9/9/60 1/6/95 1/10/95
Iresh 70,000 Lecturer 9/9/60 1/10/95 12/9%
Iresh 70,000 Professor 9/9/60 12/95 1/1/97

To know the employee's current salary, things are more difficult :
SELECT Salary
FROM Employee
WHERE Name = 'Tresh' AND FromDate <= CURRENT TIMESTAMP
AND CURRENT TIMESTAMP <= ToDate

Determine the salary history

Result : For each person, the maximal intervals of each salary

Name Salary FromDate ToDate
Iresh 60,000 1/1/95 1/6/95
Tresh 70,000 1/6/95 1/1/97

An employee could have arbitrarily many title changes between salary changes.
For the data model, new columns are identical to attribute BirthDate.

To know the employee's current salary, things are more difficult.

SELECT Salary

FROM Employee

WHERE Name = 'Iresh' AND FromDate <= CURRENT TIMESTAMP
AND CURRENT TIMESTAMP <= ToDate

SQL Code
CREATE TABLE Temp(Salary, FromDate, ToDate) AS

image16.png
SELECT Salary, FromDate, ToDate
FROM Employee
WHERE Name = 'Iresh’'
repeat
UPDATE Temp T1
SET (T1.ToDate) = (SELECT MAX(T2.ToDate)
FROM Temp AS T2
WHERE T1.Salary = T2.Salary
AND T1.FromDate < T2.FromDate
AND T1.ToDate >= T2.FromDate
AND T1.ToDate < T2.ToDate)
WHERE EXISTS (SELECT *
FROM Temp as T2
WHERE T1.Salary = T2.Salary
AND T1.FromDate < T2 FromDate
AND T1.ToDate >= T2.FromDate
AND T1.ToDate < T2.ToDate)
until no tuples updated

Temporal Join

e A temporal join is a join operation on two temporal relations, in which each tuple
has additional attributes indicating a time interval.

e The temporal join predicates include conventional join predicates as well as a
temporal constraint that requires the overlap of the intervals of the two joined
tuples. The result of a temporal join is a temporal relation.

e Example of temporal join : Consider the following various tables

EmployeeSal
Name Salary FromDate ToDate
John 60,000 1/1/95 1/6/95
John 70,000 1/6/95 1/1/97

EmployeeTitle

Name Title FromDate ToDate
John Assistant 1/1/95 1/10/95
John Lecturer 1/10/95 12/96

John Professor 1/2/96 1/1/97

image17.png
EmployeeSal [| EmployeeTitle

Name Salary Title FromDate ToDate
John 60,000 Assistant 1/1/95 1/6/95
John 70,000 Assistant 1/6/95 1/10/95
John 70,000 Lecturer 1/10/95 12/96
John 70,000 Professor 1/2/96 1/1/97

e Provide salary and history :
SELECT S.Name, Salary, Title, S.FromDate, S.ToDate
FROM EmployeeSal S, EmployeeTitle T
WHERE S.Name = T.Name
AND T.FromDate <= S.FromDate
AND S.ToDate < T.ToDate
e By using temporal join method using SQL :
SELECT S.Name, Salary, Title, S.FromDate, S.ToDate
FROM EmployeeSal S, EmployeeTitle T
'WHERE S.Name = T.Name
AND T.FromDate <= S.FromDate
AND S.ToDate <= T.ToDate
UNION ALL
SELECT S.Name, Salary, Title, S.FromDate, T.ToDate
FROM EmployeeSal S, EmployeeTitle T
WHERE S.Name = T.Name
AND S.FromDate > T.FromDate
AND T.ToDate < S.ToDate
AND S.FromDate < T.ToDate
UNION ALL
SELECT S.Name, Salary, Title, T.FromDate, S.ToDate
FROM EmployeeSal S, EmployeeTitle T
WHERE S.Name = T.Name
AND T.FromDate > S.FromDate
AND S.ToDate < T.ToDate
AND T.FromDate < S.ToDate
UNION ALL
SELECT S.Name, Salary, Title, S.FromDate, T.ToDate
FROM EmployeeSal S, EmployeeTitle T
WHERE S.Name = T.Name
AND T.FromDate >= S ,FromDate
AND T.ToDate <= S,ToDate

image18.png
TsQL2

TSQL2 (Temporal Structured Query Language) is a temporal extension to the
SQL-92 language standard. It uses a linear time structure, bounded on both ends.

TSQL2 inherits the temporal types in SQL-92, DATE, TIME, TIME-STAMP and
INTERVAL and adds the PERIOD data type.

TSQL2 should not distinguish between snapshot equivalent instances, i.e., snapshot
equivalence and identity should be synonymous.

TSQL2 should support only one valid-time dimension. For simplicity, tuple time
stamping should be employed.

TSQL2 should be based on homogeneous tuples.

Valid time support should include support for both the past and the future.
Timestamp values should not be limited in range or precision.

TSQL2 does not allow the user to ask a question that will differentiate the
alternatives. In- stead, the model accommodates all three alternatives by assuming
that an instant on a time-line is much smaller than a chronon, which is the
smallest entity that a timestamp can represent exactly.

TSQL2 includes the concept of a baseline clock, which provides the semantics of
timestamps. The baseline clock relates each second to physical phenomena.

SQL-92's datetime and interval data types are replaced with more precise instants,
intervals, and spans of specifiable range and precision. The range and precision
can be es- pressed as an integer.

A surrogate data is introduced in TSQL2. Surrogates are unique identifiers that
can be compared for equality, but the values of which cannot be seen by the users.

Three time-lines are supported in TSQL2 : user-defined time, valid time, and
transaction time.

Transaction-time is bounded by inception, the time when the database was
created, and until changed. In addition, user-defined and valid time have two
special values, beginning and forever, where are the least and greatest values in
the ordering.

Transaction time has the special value until changed. Valid and user-defined data
types can be temporally indeterminate.

TSQL2 also allows state tables to be specified. In such tables, each tuple is times-
tamped with a temporal element, which is a union of maximal intervals.

Temporal elements are closed under union, difference, and intersection.
Timestamping tuples with temporal elements is conceptually appealing and can

image19.png
support multiple representational data models. Dependency theory can be
extended to apply in full to this temporal data model.

TSQL2 also allows event tables to be specified. In such tables, each tuple is
timestamped with an instant set.

Schema Specification

The CREATE TABLE and ALTER statements were extended to allow specification
of the valid- and transaction-time aspects of temporal relations.

The FROM clause in TSQL2 allows tables to be restructured so that the temporal
elements associated with tuples with identical values on a subset of the columns
are coalesced.

Temporal selection : The valid-time timestamp of a table may participate in
predicates in the WHERE clause by simply mentioning the table name.

Temporal projection : Conventional snapshot relations, as well as valid-time
relations, can be derived from underlying snapshot or valid-time relations. An
optional VALID or VALIDINTERSECT clause is used to specify the timestamp of
the derived tuple. The transaction time of an appended or modified tuple is
supplied by the DBMS.

Update : The update statements have been extended in a manner similar to the
SELECT statement, to specify the temporal extent of the update.

Define the prescription relation :

CREATE TABLE Prescription (Name CHAR(30),
Physician CHAR(30), Drug CHAR(30), Dosage CHAR(30),
Frequency INTERVAL MINUTE)

AS VALID STATE DAY AND TRANSACTION

The Name column specifies the patients name. the Frequency is the number of
minutes between drug administrations.

The Prescription relation is a bitemporal state relation, as it includes both kinds of
time. There are six kinds of relations.

1. Snapshot relations, which have no temporal support.

2. Valid-time state relations, specified with AS VALID STATE.
3. Valid-time event relations, specified with AS VALID EVENT.
4. Transaction-time relations, specified with AS TRANSACTION.
5.

. Bitemporal state relations, specified with AS VALID STATE AND
TRANSACTION.

image20.png
e More powerful query languages are based on extensions of FO with recursion, and
are reminiscent of the well-known fixpoint queries studied in finite-model theory.

IEXXN Datalog

¢ Datalog is a logical query language. It exists somewhere between relational algebra
and Prolog.

e Datalog is a declarative logic language in which each formula is a function-free
Horn clause, and every variable in the head of a clause must appear in the body
of the clause.

e It is a lightweight deductive database system where queries and database updates
are expressed in the logic language.

e A datalog rule is an expression of the form

Ri(u1) < Rp(uy),...,Rp(uy), where n > 1, Ry,...,R, are relation names and
uy,...,uy are free tuples of appropriate arities. Each variable occurring in u; must
occur in at least one of u,,...,u,. A datalog program is a finite set of datalog rules.

e Example 1: A relational database about students and the courses they took :

Student Took
Name Major Year Name Course Grade
Joe Doe cs senior Joe Doe cs123 27
Jim Jones cs junior Jim Jones cs101 3.0
Jim Black ce junior Jim Jones cs143 33
Jim Black cs143 3.3
Jim Black cs101 2.7

¢ Dialog equivalent is as follows :

student('Joe Doe',cs, senior).
student('Jim Jones', cs, junior).
student('Jim Black', ee, junior).
took('Joe Doe', cs123, 2.7).
took('Jim Jones', cs101, 3.0).
took('Jim Jones', cs143, 3.3).
took('Jim Black', cs143, 3.3).
took('Jim Black', cs101, 2.7).

image21.png
Example 2 :
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)
Happy(d) <-
Frequents(d, bar) AND
Likes(d, beer) AND
Sells(bar, beer, p)

e Above is a rule.

o Left side = head.

¢ Right side = body = AND of subgoals.

e Head and subgoals are atoms.
= Atom = predicate and arguments.
= Predicate = relation name or arithmetic predicate, e.g. <.
= Arguments are variables or constants.

e Subgoals (not head) may optionally be negated by NOT.

e Head is true of its arguments if there exist values for local variables, (those in
body, not in head) that make all of the subgoals true. If no negation or arithmetic
comparisons, just natural join the subgoals and project onto the head variables.

e A rule can make no sense if variables appear in funny ways.

e Examples :
S(x) <-R(y)
S(x) <- NOT R(x)
S(x) <-R(y) ANDx < y
e In each of these cases, the result is infinite even if the relation R is finite

e To make sense as a database operation, we need to require three things of a
variable x. If x appears in either the head, a negated subgoal or an arithmetic
comparison then x must also appear in a nonnegated ordinary subgoal of the
body.

Datalog Programs

e A collection of rules is a datalog program. Predicates/relations divide into two
classes :

a. EDB = extensional database = relation stored in DB

b. IDB = intensional database = relation defined by one or more rules

image22.png
e A predicate must be IDB or EDB, not both. Thus an IDB predicate can appear in
the body or head of a rule; EDB only in the body

Relational Calculi

e Relational calculus is a non procedural query language. It uses mathematical
predicate calculus instead of algebra. It provides the description about the query
to get the result where as relational algebra gives the method to get the result.

e Relational calculus are of two types : Domain Relational Calculus (DRC) and
Tuple Relational Calculus (TRC)
1. Domain Relational Calculus (DRC)

¢ In Domain relational calculus, filtering of records is done based on the domain of
the attributes rather than tuple values. A domain is nothing but the set of allowed
values in the column of a table .

e Syntax: {cl,c2,c3, .., cn | F(cl, c2, 3, ... cn)}

where, cl, c2... etc represents the domain of attributes(columns) and F represents
the formula including the condition for fetching the data.

e Example : (< name, age > | € Student A age <21}

e Again, the above query will return the names and ages of the students in the table
Student who not greater than 21 years old

e Formula is recursively defined, starting with simple atomic formulas and building
bigger and better formulas using the logical connectives.

e Atomic formula : <x1, x2,..., xn> € Rname, or X op Y, or X op constant

e opisoneof<, > =<, 2 #

2. Tuple Relational Calculus (TRC)

e The tuple relational calculus is specified to select the tuples in a relation. In TRC,
filtering variable uses the tuples of a relation. The result of the relation can have
one or more tuples.

e Form of query : (T | Condition(T)}

e T is the target, a variable that ranges over tuples of values. Condition is the body
of the query.

e Example : {T | Teaching(T) AND T.Semester= 'F2000'}
When a concrete tuple has been substituted for T :

a. Teaching(T) is true if T is in the relational instance of Teaching

image23.png
b. T.Semester = 'F2000' is true if the semester attribute of T has value F2000

c.

Equivalent to :

SELECT *

FROM Teaching T

WHERE T.Semester = 'F2000'

Relation Between SQL and TRC
{T | Teaching(T) AND T.Semester= 'F2000'}

SELECT *
FROM Teaching T
WHERE T.Semester = 'F2000'

Target T corresponds to SELECT list : The query result contains the entire tuple.
Body split between two clauses :

(i) Teaching(T) corresponds to FROM clause

(ii) T.Semester= "F2000' corresponds to WHERE clause

The result of a TRC query with respect to a given database is the set of all choices

of tuples for the variable T that make the query condition a true statement about
the database.

Difference between DRC and TRC

Domain Relational Calculus (DRC) Tuple Relational Calculus (TRC)
More variable needed and declared. Fewer variable needed and declared.
Join and constant conditions can be written Need to explicitly state join conditions and
directly within relations comparisons between an attributes and constant
Variable range over domain elements Variable range over tuples

- Relational Algebra

Relational algebra is a procedural query language, which takes instances of
relations as input and yields instances of relations as output.

It uses operators to perform queries. An operator can be either unary or binary.
They accept relations as their input and yield relations as their output.

Relational algebra is performed recursively on a relation and intermediate results
are also considered relations.

image24.png
e Relational algebra (RA) is a theoretical query language for the relational model.
Relational algebra is not used in any commercial system on the user interface
level.

e An algebra is a set together with operations on this set. For instance, the set of
integers together with the operations + and * forms an algebra.

e In the case of relational algebra, the set is the set of all finite relations. One
operation of relational algebra is U (union). This is natural since relations are sets.

e Another operation of relational algebra is selection. In contrast to operations like +
for integers, the selection ¢ is parameterized by a simple condition.

e The fundamental operations of relational algebra are Select, Project, Union, Set
different, Cartesian product and Rename.

Find all branch managers that work at a Lucknow branch.

Solution :

1. SQL query :

SELECT Sno, Fname, Position, Bno

FROM staff s, branch b

WHERE s.bno = b.bno AND

(s.position = ' Manager' AND b.city = ' Lucknow');
2. Relational algebra query :

a. ¢ (position = 'Manager') A (city="Lucknow') A (staff.bno=branch.bno)
(staff X Branch)

b. 6 (position = 'Manager') A (city="Lucknow') A (staffX staff.bno=branch.bno Branch)
c. o (position = 'Manager'(Staff))X staff.bno=branch.bno (¢ city = 'Lucknow'(Branch))

e In relational databases, data are stored in the form of tables called relations. The
columns of the table are called attributes and rows are called tuples. Cardinality of
a relation is defined as the number of tuples in that relation.

e An attribute or set of attributes which uniquely identify each entry in a relation is
called a key. A relation can have more than one key.

image25.png
XX Comparison between Relational Algebra and Relational Calculus

Relational algebra Relational calculus

It is procedural method of solving the queries. It is non-procedural method of solving the
queries.

Queries are domain independent. Queries are domain dependent.
More closely associated with programming More closely associated with natural language.
language.
Evaluation of query is depends upon the order Evaluation of query is not depends upon the
of operations. order of operations.

- Spatial Database

Spatial database is a database that is optimized for storing and querying data that
represents objects defined in a geometric space. Most spatial databases allow the
representation of simple geometric objects such as points, lines and polygons.

Spatial data is a data that have some form of spatial or geographic reference that
enables them to be located in two- or three- dimensional space.

Examples of non-spatial data : Names, phone numbers, email addresses of people

Examples of spatial data : Census data, NASA satellites imagery - terabytes of
data per day, weather and climate data, rivers, farms, ecological impact, medical
imaging.

Spatial databases allow the storage of the geometries of records inside a database

as well as providing functionality for querying and retrieving the records using
these geometries.

Many important application domains have spatial data and queries. Some
examples follow :

a. Army Field Commander : Has there been any significant enemy troop
movement since last night ?

b. Insurance Risk Manager : Which homes are most likely to be affected in the
next great flood on the Mississippi ?

c. Medical doctor : Based on this patient's MRI, have we treated somebody with
a similar condition ?

d. Molecular Biologist : Is the topology of the amino acid biosynthesis gene in
the genome found in any other sequence feature map in the database ?

e. Astronomer : Find all blue galaxies within 2 arcmin of quasars.

image26.png
Types of Spatial Data

e Spatial data are of two types according to the storing technique, namely, raster
data and vector data. Raster data are composed of grid cells identified by row and
column.

e The whole geographic area is divided into groups of individual cells, which
represent an image.
1. Point Data
e Points in a multidimensional space

e Example : Raster data such as satellite imagery, where each pixel stores a
measured value.

e Example : Feature vectors extracted from text.

2. Region Data
e Objects have spatial extent with location and boundary.

e DB typically uses geometric approximations constructed using line segments,
polygons, etc., called vector data.

Spatial Relationships

e To classify spatial objects into the following groups :
1) Simple Point (SP) : Represented by a coordinate pair (x, y) or a trible (x, y, z),
2) Complex Point (CP) : Intersection point of complex lines
3) Simple Line (SL) : Represented by an ordered sequence of simple points,

4) Complex Line (CL) : Stripe represented by two border lines (unintersected
simple lines),

5) Directed Simple Line (DSL) : Directed simple line,
6) Directed Complex Line (DCL) : Directed complex line,
7) Polygon (POL) : Area represented by border line

e Spatial relationships are connections between spatial objects when geometric
properties are considered. Three types of spatial relationships have been
recognized : topological, metric and ordinal.

e Here, topological relationships are those that do not change under topological
transformations, e.g., the connectivity of two objects; metric relationships are those
described by measures of a metric space and distances and angles are of those

image27.png
relations; ordinal relationships are represented by relative orders between objects,
which are often described by prepositions such as before and behind.

e These three types of spatial relationships are perhaps major ones, but
unfortunately, they are not comprehensive.

e For example, the indivisibility between two objects is a spatial relationship which
is not topological, not metric and not ordinal.

e The geometric similarity between two objects of same dimension is an other
example.

e We need a comprehensive model about spatial relationships which includes all
relations as it is an important basis for performing spatial analysis. Such a model
can only be derived from spatial objects, so a study on geometric properties is
necessary.

e The spatial relationships between spatial objects should be derived from these two
properties.

Spatial Data Structures

e Spatial data structures are structures that manipulate spatial data, that is, data that
has geometric coordinates.

e Spatial data comes up in many areas of computer science, like Geographic
Information Systems (GIS), robotics, computer graphics, virtual reality, as well as
in other disciplines like finite element analysis, solid modeling, computer-aided
design and manufacturing, biology, statistics, VLSI design, to mention just a few.

e Data structures to store geometric information. Sample applications are collision
detection, location queries, chemical simulations and rendering.

Spatial Access Methods

e The main purpose of spatial access methods is to support efficient selection of
objects based on spatial properties.

e For example, a range query selects objects lying within specified ranges of
coordinates; a nearest neighbour query finds the object lying closest to a specified
object.

e A spatial access method needs to take into account both spatial indexing and
clustering techniques.

e The main problem in design of spatial access methods is that there is no total
ordering among the spatial data objects that preserves spatial proximity.

image28.png
e Consider, for example, a user wants to find restaurants closest to his location. One
try to answer this query is to build a one-dimensional index that contains the
distances of all restaurants from user's location sorted in ascending order.

e To answer his query, we can return first entries from the sorted index. However,
this index cannot support a query issued by some other user at a different
location.

e In order to answer the query of this new user, we will have to sort all the
restaurants again in ascending order of their distances from this user.

e The difficulty lies in the fact that there is no mapping from multidimensional
space into one-dimensional space so that the objects that are close in
multidimensional space are also close in the one-dimensional sorted index.

e Traditional one-dimensional access methods like B-tree and extendible hashing are
not suitable for spatial databases.

e Spatial Access Methods (SAMs) are k-d trees, Point Quadtrees, MX-Quadtree,
z-ordering and R-trees

Two Marks Questions with Answers

Q.1 Define active database.

Ans.: An active database is a database that includes an event-driven architecture
which can respond to conditions both inside and outside the database. Possible uses
include security monitoring, alerting, statistics gathering and authorization.

Q.2 What are the two major goals of starburst ?

Ans. : e Design of a rule definition language with a clearly defined and flexible
execution semantics.

e Rapid implementation of a fully integrated rule processor using the extensibilit
features of Starburst.

Q.3 What do you mean by tuple relational calculus ?

Ans. : A tuple relational calculus is a non procedural query language which specifies
to select the tuples in a relation. It can select the tuples with range of values or tuples
for certain attribute values etc. The resulting relation can have one or more tuples.

Q.4 What is difference between relational algebra and relational calculus ?

Ans. : The basic difference between relational algebra and relational calculus is that
relational algebra is a procedural language whereas, the relational calculus is a
non-procedural, instead it is a declarative language. relational algebra specifies the

sequence in which operations have to be performed in the query.

image29.png
Q.5 What are the different types of relational calculus ?

Ans. : There are two types of relational calculus - Tuple Relational Calculus (TRC) and
Domain Relational Calculus (DRC)

Q.6 Is SQL support relational algebra and relational calculus ?

Ans. : Relational algebra and relational calculus are the formal query languages for a
relational model. Both form the base for the SQL language which is used in most of the
relational DBMSs. Relational algebra is a procedural language. On the other hands,
relational calculus is a declarative language.

Q.7 What is spatial database ?

Ans. : Spatial database is a database that is optimized for storing and querying data
that represents objects defined in a geometric space. Most spatial databases allow the
representation of simple geometric objects such as points, lines and polygons.

Q.8 Define datalog.

Ans. : Datalog is a declarative logic language in which each formula is a function-free
Horn clause, and every variable in the head of a clause must appear in the body of the
clause.

image1.png
- Active Databases

Traditional database management systems are passive in the sense that commands
are executed by the database as and when requested by the user or application
program.

An active database is a database that includes an event-driven architecture which
can respond to conditions both inside and outside the database. Possible uses
include security monitoring, alerting, statistics gathering and authorization.

Active databases are able to monitor and react to specific circumstances of
relevance to an application. The reactive semantics is both centralized and handled
in a timely manner.

An active database system must provide a knowledge model (i.e. a description
mechanism) and an execution model (i.e. a runtime strategy) for supporting this
reactive behavior.

Common approach for the knowledge model uses rules that have up to three
components : an event, a condition and an action.

The event part of a rule describes a happening to which the rule may be able to
respond. The condition part of the rule examines the context in which the event
has taken place.

The action describes the task to be carried out by the rule if the relevant has taken
place and the conditions has evaluated to true. It is called as
Event-Condition-Action (ECA) rule.

The rules in active databases are commonly made up from up to three parts : an
event, a condition and an action. It perfectly fits the reactive behavior.

The active rules do not have to contain all three parts. The event or condition part
can be omitted. Then we speak about condition-action rules (often referred as
production rules) or event-action rules. Every type of active rule has its specific
kind of use and production rules are quite similar to deductive rules.

Three categories of active database applications are distinguished :

a. Database system extension support for other parts of database such as integrity
constraints and materialized views etc.

b. Closed database application rules directly support the semantics of the
application e.g., repair actions in a modeling database

c. Open database application used in conjunction with monitoring devices.
Event Condition Action :

WHEN event occurs

